Microtubules modulate cardiomyocyte beta-adrenergic response in cardiac hypertrophy.
نویسندگان
چکیده
The role of microtubules in modulating cardiomyocyte beta-adrenergic response was investigated in rats with cardiac hypertrophy. Male Sprague-Dawley rats underwent stenosis of the abdominal aorta (hypertensive, HT) or sham operation (normotensive, NT). Echocardiography and isolated left ventricular cardiomyocyte dimensions demonstrated cardiac hypertrophy in the HT rats after 30 wk. Cardiomyocyte microtubule fraction was assayed by high-speed centrifugation and Western blot. In contrast to previous reports of increased microtubules after acute pressure overload, microtubule fraction for HT was significantly lower than that for NT. Cardiomyocytes were exposed to either 1 microM colchicine, 10 microM taxol, or equivalent volume of vehicle. Colchicine decreased microtubules, and taxol increased microtubules in both groups. Cardiomyocyte cytosolic calcium ([Ca2+]c) and shortening/relaxation dynamics were assessed during exposure to increasing isoproterenol concentrations. The beta-adrenergic response for these variables in the HT group was blunted compared with NT. However, increased microtubule assembly by taxol partially recovered the normal beta-adrenergic response for time to peak [Ca2+]c, time to peak shortening, and mechanical relaxation variables. Microtubule assembly may play a significant role in determining cardiomyocyte beta-adrenergic response in chronic cardiac hypertrophy.
منابع مشابه
Fibroblast growth factor-2 mediates pressure-induced hypertrophic response.
In vitro, fibroblast growth factor-2 (FGF2) has been implicated in cardiomyocyte growth and reexpression of fetal contractile genes, both markers of hypertrophy. However, its in vivo role in cardiac hypertrophy during pressure overload is not well characterized. Mice with or without FGF2 (Fgf2(+/+) and Fgf2(-/-), respectively) were subjected to transverse aortic coarctation (AC). Left ventricul...
متن کاملMyosin heavy chain synthesis is independently regulated in hypertrophy and atrophy of isolated adult cardiac myocytes.
Hypertrophy of isolated adult feline cardiac muscle cells may be induced in culture by either alpha- or beta-adrenergic agonists. However, it has been shown previously that each of these agonists activate different subsets of immediate-early response genes and have different effects on expression of "fetal" protein isoforms and stimulation of protein synthesis. Moreover, in adult feline heart c...
متن کاملBone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors.
BACKGROUND We recently reported that cardiomyocytes could be differentiated from bone marrow mesenchymal stem cells in vitro by 5-azacytidine treatment. In native cardiomyocytes, adrenergic and muscarinic receptors play crucial roles in mediating heart rate, conduction velocity, contractility, and cardiac hypertrophy. We investigated whether these receptors are expressed in differentiated CMG c...
متن کاملDecreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals.
RATIONALE Multiple cyclic nucleotide phosphodiesterases (PDEs) degrade cAMP in cardiomyocytes but the role of PDEs in controlling cAMP signaling during pathological cardiac hypertrophy is poorly defined. OBJECTIVE Evaluate the beta-adrenergic regulation of cardiac contractility and characterize the changes in cardiomyocyte cAMP signals and cAMP-PDE expression and activity following cardiac hy...
متن کاملCatecholamines stimulate interleukin-6 synthesis in rat cardiac fibroblasts.
Proinflammatory cytokines have been implicated in the pathophysiology of different heart diseases. Recent evidence suggests that interleukin-6 (IL--6) may play a role in mechanisms leading to cardiac hypertrophy. In addition, catecholamines are known to induce cardiac hypertrophy. In the present study, we examined whether cardiac fibroblasts may be a potential source of IL--6 production in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 275 5 Pt 2 شماره
صفحات -
تاریخ انتشار 1998